Waterborne Search Waterborne Navigation

Publications

PresentationsWater/Wastewater Assessments2018

Modelling Microplastics in Rivers in the US (339)

View MoreView Less

Room: Session Room N
Date: Tuesday May 15th, 2018
Start Time: 14:15
Final ID: 339

Abstract:
Pollution with nano- and microplastics (MPs; particles < 5 mm) is a topic of emerging concern and as such receives growing interest. Although measurement and monitoring data are indispensable, there also is a need for estimated concentrations to enable prospective assessments and to guide analysis of retrospective ecological analyses. Besseling et al (2017) provided the NanoDUFLOW model, a detailed MP aggregation-sedimentation model integrated in a hydrological and particle transport model. A much larger scale model potentially suitable to simulate MPs originating from WWTPs is the iSTREEM® model, which has been developed to estimate chemical concentration distributions for all rivers and streams of the USA receiving WWTP discharges. Here we merge these two riverine modeling worlds: NanoDUFLOW with iSTREEM for MPs, to simulate spreading of MPs from WWTP point sources in US waterways and to assess export to the Great Lakes for a range of particle sizes. This combines the mechanistic realism of NanoDUFLOW, accounting for formation and settling of heteroaggregates, with the US well-established iSTREEM implementation. We modeled floating as well as non-buoyant MP, for diverse sizes, from 100 nm to 10 mm, a range that incorporates the theoretical parabolic size-settling relationship reported by Besseling et al (2017). Depth dependent in-stream first order removal rate constants simulated with NanoDUFLOW were combined with standard iSTREEM output (which was used to simulate the emission, transport and water column concentrations of MP) in an Excel-based post-processing phase, without modifing the iSTREEM model directly. Simulations were spatially explicit with MP concentrations being modeled for the Sandusky River watershed in Ohio (~3500 km2). Emissions were based on per capita usage and population served for each of the 20 WWTPs within the watershed. Modelling results show the effects of population density, MP size and density on riverine concentrations and export to Lake Erie. Buoyant as well as the smallest non-buoyant MP fractions can be transported over long distances, reaching receiving waters such as the Great Lakes. In contrast, larger non-buoyant MPs settle more locally in the vicinity of the WWTPs. Simulating depth-dependent removal as demonstrated here could be incorporated into the core iSTREEM code in order to efficiently process all US waterways impacted by WWTPs, as well as examining ultimate marine discharge proportions by particle size.

A. Koelmans (Wageningen University); C.M. Holmes (Waterborne Environmental). Modelling Microplastics in Rivers in the US. SETAC EU 2018. Presentation.

PostersCrop Protection2018

Implications of Dataset Selection and GIS Processing on Modelling (MO143)

View MoreView Less Access Article>

Room: Exhibition hall
Date: Monday May 14th, 2018
Start Time: 8:30 AM
Final ID: MO143

Abstract:
Groundwater assessment guidelines provided by the FOCUS groundwater working group (2009) and EFSA (2014) describe succinctly a multi-tiered modelling framework that includes spatiotemporal assessments in the higher tiers; e.g., tier 3a and 3b. As part of the spatio-temporal assessment several GIS and daily climate datasets were recommended. These recommended datasets, however, have been superseded by new datasets in the past few years. Specifically, daily weather and soils data have undergone significant updates, which are reflective of the considerable effort in Europe to update this spatial information. Not only does dataset choice, but also how datasets are being processed in a geographic information system, impact modeling results. Basic assumptions regarding aggregation of data, data slicing for determining climatic zones and data resolution impact our modelling results. In this poster, we will show the implications of data selection and data processing on a distributed modelling framework centered around GeoPEARL 4R. Specifically we will focus on differences between datasets, data set resolution, capturing variability and ones ability to model at the pan-European level within EFSA’s tier 3 guidelines.

G. Hoogeweg, M. Geuvara (Waterborne Environmental). Implications of Dataset Selection and GIS Processing on Modelling. SETAC EU 2018. Poster.

PostersCrop Protection2018

Development of an European Tier 3+ Spatially Distributed Modelling Framework (MO141)

View MoreView Less Access Article>

Room: Exhibition hall
Date: Monday May 14th, 2018
Start Time: 8:30 AM
Final ID: MO141

Abstract:

Higher tier groundwater assessment in the European Union (EU28) allow the use of spatially distributed modeling approaches for the assessment of groundwater and exposure of soil organisms. An advantage of a distributed model is that model inputs can reflect local conditions and capture the spatial variability of the landscape and weather patterns. An advanced modelling framework, based on the GeoPEARL 4R model was developed for the EU28. This model fills the niche for higher Tier assessments needs. This modelling framework represents over 1.340.000 km2 of arable agricultural lands in Europe. Nearly 382.000 unique soil, weather, FOCUS zone combinations represent the variability of the landscape and climate. Datasets to populate the model, included CORINE land cover, soils data (ESDB, ESDB Derived Data for Modelling and HYPRES, EFSA organic matter) and the JRC MARS 25km gridded daily weather data. Agricultural management practices, irrigation, and cropping scenarios are gleaned from the standard FOCUS modelling scenario, but can be updated as needed. This European modeling framework (EMF2014) can be used for EU28, member state, FOCUS zones or crop specific groundwater vulnerability assessments, screening of existing and new plant protection products, context setting of standard scenarios, test sites, and lysimeter, site selection. In this presentation we will show how we developed the framework and several example outputs as well as discuss the implications of conducting largescale distributed modelling assessment.

G. Hoogeweg (Waterborne Environmental); P. Sweeney (Syngenta). Development of an European Tier 3+ Spatially Distributed Modelling Framework. SETAC EU 2018. Poster.

Papers & ReportsCrop Protection2018

Assessing and mitigating simulated population‐level effects of 3 herbicides to a threatened plant: Application of a species‐specific population model of Boltonia decurrens.

View MoreView Less Access Article>

Extrapolating from organism‐level endpoints, as generated from standard pesticide toxicity tests, to populations is an important step in threatened and endangered species risk assessments. We apply a population model for a threatened herbaceous plant species, Boltonia decurrens, to estimate the potential population‐level impacts of 3 herbicides. We combine conservative exposure scenarios with dose–response relationships for growth and survival of standard test species and apply those in the species‐specific model. Exposure profiles applied in the B. decurrens model were estimated using exposure modeling approaches. Spray buffer zones were simulated by using corresponding exposure profiles, and their effectiveness at mitigating simulated effects on the plant populations was assessed with the model. From simulated exposure effects scenarios that affect plant populations, the present results suggest that B. decurrens populations may be more sensitive to exposures from herbicide spray drift affecting vegetative stages than from runoff affecting early seedling survival and growth. Spray application buffer zones were shown to be effective at reducing effects on simulated populations. Our case study demonstrates how species‐specific population models can be applied in pesticide risk assessment to bring organism‐level endpoints, exposure assumptions, and species characteristics together in an ecologically relevant context. Environ Toxicol Chem 2018;9999:1–11. © 2018 SETAC

Schmolke, A. , Brain, R. , Thorbek, P. , Perkins, D. and Forbes, V. (2018), Assessing and mitigating simulated population‐level effects of 3 herbicides to a threatened plant: Application of a species‐specific population model of Boltonia decurrens. Environ Toxicol Chem.

Papers & ReportsCrop Protection2017

Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant, Boltonia decurrens

View MoreView Less Access Article>

Although population models are recognized as necessary tools in the ecological risk assessment of pesticides, particularly for species listed under the Endangered Species Act, their application in this context is currently limited to very few cases. The authors developed a detailed, individual‐based population model for a threatened plant species, the decurrent false aster (Boltonia decurrens), for application in pesticide risk assessment. Floods and competition with other plant species are known factors that drive the species’ population dynamics and were included in the model approach. The authors use the model to compare the population‐level effects of 5 toxicity surrogates applied to B. decurrens under varying environmental conditions. The model results suggest that the environmental conditions under which herbicide applications occur may have a higher impact on populations than organism‐level sensitivities to an herbicide within a realistic range. Indirect effects may be as important as the direct effects of herbicide applications by shifting competition strength if competing species have different sensitivities to the herbicide. The model approach provides a case study for population‐level risk assessments of listed species. Population‐level effects of herbicides can be assessed in a realistic and species‐specific context, and uncertainties can be addressed explicitly. The authors discuss how their approach can inform the future development and application of modeling for population‐level risk assessments of listed species, and ecological risk assessment in general. Environ Toxicol Chem 2017;36:480–491.

Schmolke, A. , Brain, R. , Thorbek, P. , Perkins, D. and Forbes, V. (2017), Population modeling for pesticide risk assessment of threatened species—A case study of a terrestrial plant, Boltonia decurrens. Environ Toxicol Chem, 36: 480-491.

 

Papers & ReportsCrop Protection2017

Developing population models: A systematic approach for pesticide risk assessment using herbaceous plants as an example

View MoreView Less Access Article>

Population models are used as tools in species management and conservation and are increasingly recognized as important tools in pesticide risk assessments. A wide variety of population model applications and resources on modeling techniques, evaluation and documentation can be found in the literature. In this paper, we add to these resources by introducing a systematic, transparent approach to developing population models. The decision guide that we propose is intended to help model developers systematically address data availability for their purpose and the steps that need to be taken in any model development. The resulting conceptual model includes the necessary complexity to address the model purpose on the basis of current understanding and available data.

We provide specific guidance for the development of population models for herbaceous plant species in pesticide risk assessment and demonstrate the approach with an example of a conceptual model developed following the decision guide for herbicide risk assessment of Mead’s milkweed (Asclepias meadii), a species listed as threatened under the US Endangered Species Act. The decision guide specific to herbaceous plants demonstrates the details, but the general approach can be adapted for other species groups and management objectives.

Population models provide a tool to link population-level dynamics, species and habitat characteristics as well as information about stressors in a single approach. Developing such models in a systematic, transparent way will increase their applicability and credibility, reduce development efforts, and result in models that are readily available for use in species management and risk assessments.

Amelie Schmolke, Katherine E. Kapo, Pamela Rueda-Cediel, Pernille Thorbek, Richard Brain, Valery Forbes. 2017. Developing population models: A systematic approach for pesticide risk assessment using herbaceous plants as an example, Science of The Total Environment, Volumes 599–600, 1929-1938, https://doi.org/10.1016/j.scitotenv.2017.05.116

PresentationsHuman Pharmaceuticals2017

Understanding the Fate of Chemicals in Land Applied Materials Using Multi-Scale Field Studies

View MoreView Less

SETAC Session Title:  Pharmaceuticals in the Environment: Potential Environmental and Human Health Impacts
Presentation Date: Thursday November 16, 2017
Presentation Time: 8:20 PM
Location: Session Room 101AJ

Abstract:
Contaminants of emerging concern (including pharmaceuticals) are often reported in aquatic monitoring studies. A direct pathway into the environment is via discharge into rivers, if not fully removed during wastewater treatment. However, for some substances, a large fraction may be removed in the wastewater treatment process in the form of sludge. An additional pathway can occur when the sludge is land-applied as biosolids, with movement to surface water if overland runoff or erosion occurs. To understand the potential environmental exposure resulting from runoff or erosion of biosolids, field scale runoff studies real-world provide exposure data. The direct measurement of runoff and erosion under controlled field settings can be used to inform exposure modeling, to explore mitigation evaluation, and ultimately refine estimated environmental concentration calculations. Multi-plot small-scale runoff studies (ft2) can rapidly test multiple application and vegetation scenarios under simulated rainfall. These studies can also integrate a variety of soil and slope conditions. Larger landscape scale runoff studies (ftto acres) assess greater variability and may incorporate subunit environmental fate investigations. Studies at this larger scale are designed to utilize simulated or natural rainfall. Both small- and large-scale study designs produce total and flow dependent mass loading data to assess the fraction of applied chemical which is transported under defined conditions. Watershed scale runoff studies (acres to mi2) are designed to evaluate broader land use and the effect on surface water quality. Stream loading, hydrologic, and land use data are generated to fully understand the impacts that temporally or spatially distributed environmental variables may have on results. The time scale for these monitoring studies span from sub-day to multi-year. Although runoff studies conducted under USEPA Good Laboratory Practice Standards have been used for many years to support pesticide risk assessment, these types of studies can be readily applied to measure transport and fate of any land applied chemical for ultimate use in environmental risk assessment.

Les Carver, Jennifer Trask, Nathan Snyder, Greg Goodwin, Megan Cox and Daniel Perkins (Waterborne Environmental). Understanding the Fate of Chemicals in Land Applied Materials Using Multi-Scale Field Studies. Platform SETAC 2017. Minneapolis, MN.

PresentationsWater/Wastewater Assessments2017

Prospective Aquatic Risk Assessment for Mixed Land Use Catchments: A Tool to Combine Multi-Source Chemical Emissions Over Time

View MoreView Less

SETAC Session Title:  Improving the Environmental Assessment of Complex Composition Substances and Mixtures for Chemicals Management
Presentation Date: Thursday November 16, 2017
Presentation Time: 3:40 PM
Location: Session Room 101BI

Abstract:
In 2015, a SETAC Pellston® workshop was held to help inform decision making around aquatic mixture risk assessments of chemicals using exposure scenarios for agricultural, domestic, and urban scenarios. Prospective emissions of 37 chemicals were estimated and combined into daily mixture profiles over a 10-year period. The mixture risk assessment looked at daily individual substance risk quotients (RQs) and multiple substance ∑RQ (assuming concentration addition), along with implementation of the Maximum Cumulative Ratio (MCR) approach. Risk was examined at the bottom of a hypothetical catchment containing a changeable configuration of sub-catchments defined by three land use types (agricultural, city [domestic + urban], natural).  An underlying spreadsheet-based model was developed to integrate daily loadings of individual chemicals from each sub-catchment, combined with a simplified hydrologic model, to produce a time series of mixture profiles at the catchment outlet.  Catchment configuration is changed by varying the placement, type and number of sub-catchments in the system.  Model results show a high spatio-temporal variability of individual chemical concentrations and their mixtures based on catchment configuration. Even constant emissions of household chemicals showed variability in concentration related to river flow driven by rain events. The outcome of the overall Pellston study demonstrated that a scenario-based approach can be used to determine whether mixtures of chemicals pose risks over and above any identified using existing approaches for single chemicals, how often and to what magnitude, and ultimately which mixtures (and dominant chemicals) cause greatest concern.  In this talk focusing on the underlying catchment model, mixture risk results for different catchment configurations will be presented.

Christopher Holmes (Waterborne Environmental), Colin Brown (University of York), Dick De Zwart (Mermayde), Jerome Diamond (Tetra Tech), Scott Dyer (The Procter & Gamble Company), Stuart Marshall (Unilever), Leo Posthuma (RIVM; Radboud University). Prospective Aquatic Risk Assessment for Mixed Land Use Catchments: A Tool to Combine Multi-Source Chemical Emissions Over Time. Platform SETAC 2017. Minneapolis, MN.

PostersCrop Protection2017

Using Population Models to Gain Insights into Direct and Indirect Effects of Pesticides on Listed Fish Populations

View MoreView Less

SETAC Session Title:  Ecosystem Services, Stakeholder Values, and Sustainability
Poster Date: Thursday November 16, 2017
Location: Exhibit Hall

Abstract:
The U.S. Endangered Species Act has the goal of protecting the continued existence and diversity of species as part of the natural heritage of the nation. The law recognizes this ecosystem service provided by endangered species that may be valued for cultural, aesthetic, recreational or other reasons. The protection goal for listed species is generally the long-term survival and recovery of species populations. Ecological models provide a tool to evaluate this protection goal as part of the total services provided by an ecosystem. We present a population model for the threatened Slackwater darter (Etheostoma boschungi) to identify stressors and assess levels of stress that may affect population decline. The model describes Slackwater darter population trends by considering indirect effects of stressors on the food web and food availability. Using readily available information in the published scientific literature, we incorporated relationships between reduced food availability and body size, survival, and fecundity in fish into the Slackwater darter model. We analyzed exposure-effects relationships of a pesticide with the model to estimate exposure levels that could cause long-term effects on population growth and abundance. Further, we assessed the applicability of the modeling approach to a second listed fish species to explore the application of a species-specific model to related species with similar life histories. By combining information on life history and direct and indirect effects, population models can provide a valuable tool to assess potential risks of pesticides to populations of listed and other non-target species over ecologically relevant time periods.

Amelie Schmolke, Brian Kearns, Colleen Moloney, Katherine Kapo, Matthew Kern (Waterborne Environmental), Alan Samel (DuPont), Valery Forbes (University of Minnesota), Aldos Barefoot (DuPont). Using Population Models to Gain Insights into Direct and Indirect Effects of Pesticides on Listed Fish Populations. Platform SETAC 2017. Minneapolis, MN.

PresentationsCrop Protection2017

Population Model for the Mead’s Milkweed: A Tool for Pesticide Risk Assessment for a Threatened Plant

View MoreView Less

SETAC Session Title:  Aquatic and Terrestrial Plants in Ecotoxicology and Risk Assessment
Presentation Date: Thursday November 16, 2017
Presentation Time: 8:40 AM
Location: Session Room 200BC

Abstract:
Population models can address the potential impacts of pesticides on populations or species rather than individuals, and have been identified as necessary tools for pesticide risk assessment of species listed under the Endangered Species Act (ESA).  Few examples of population models developed for this specific purpose are found in the scientific literature, especially population models addressing potential risks of pesticides to listed plants. We present a population model for Mead’s milkweed (Asclepias meadii), a species listed as threatened under the ESA throughout its range across the Midwestern US, as an example of a long-lived and slow-reproducing herbaceous plant species. With the model, we test different herbicide dose-response curves as derived from standard test species to assess a range of realistic organism-level responses and their relationships to population-level outcomes. We combine assumptions about organism-level toxicity of the herbicides with realistic exposure scenarios over extended time periods. Population dynamics and abundances over time with and without exposure to herbicides are compared. With the population model of the listed milkweed, we can estimate potential effects of herbicides to populations which represent an ecologically relevant endpoint for risk assessments. Scenarios relating to the toxicity of pesticides to the species, spatial and temporal exposure patterns, and assumptions about other stressors affecting populations of the species can be assessed. To assess hypothetical mitigation scenarios, buffers (i.e. setback herbicide spraying distances from species locations) are imposed within the model in order to evaluate their corresponding influence on population metrics as a function of distance.

Amelie Schmolke (Waterborne Environmental), Richard Brain (Syngenta), Valery Forbes (University of Minnesota). Population Model for the Mead’s Milkweed: A Tool for Pesticide Risk Assessment for a Threatened Plant. Platform SETAC 2017. Minneapolis, MN.