Waterborne Search Waterborne Navigation

Publications: Home and Personal Care Products

PresentationsHome and Personal Care Products2016

Spatial Improvements Leading to Advances in Down-the-Drain Chemical Exposure Modeling with iSTREEM® 2.0

View MoreView Less

iSTREEM® (“in-stream exposure model”) is a publicly-available web-based model (www.istreem.org) that estimates down-the-drain chemical concentrations in waste water treatment plant (WWTP) effluents, drinking water intakes (DWI), and in streams impacted by domestic waste water effluent across the continental U.S. and a number of watersheds in Canada under mean annual and low-flow (7Q10) conditions. Major upgrades to the model’s underlying data were made by incorporating higher-resolution and more current spatial datasets, leading to the release of iSTREEM® 2.0. The presentation provides an overview of the development of iSTREEM® 2.0, including how specific data needs were addressed and major assumptions considered in developing the model. The model river network was upgraded to a higher-resolution hydrologic dataset based on the USEPA and USGS NHDPlus version 2, which constitutes about 228,000 river segments totaling 243,000 river miles across continental U.S. For all the river segments, estimated mean annual flows were derived from NHDPlus, but low flows (7Q10) were exclusively developed for iSTREEM® 2.0. WWTP and associated facility level information were derived from the most recent USEPA Clean Watershed Needs Survey 2012 dataset, which includes about 13,000 facilities accounting for a total population of 175 million and effluent flow of 25,000 MGD. WWTP facilities were associated to the river network by applying techniques developed by USEPA. Enhancements to the model algorithm has made it possible to run the simulations efficiently and examine chemical exposure at a detailed spatial scale over a large geography (river basins or U.S.). Model simulation results are accessible to users in tabular (MS Excel) and spatial (MS Access) data formats for easy interpretation and further customization. A case study comparing prior version of the model and latest iSTREEM® 2.0 for the U.S will be presented to examine the impact of recent upgrades to model results – with focus on the national distribution of flows (mean and 7Q10’s), effluent PEC’s, water use, dilution factors, and receiving surface water PEC’s. The developments to iSTREEM® improves its utility as a tool to support environmental exposure assessments by a variety of users for environmental risk assessments across multiple commodity groups (personal care products, pharmaceuticals, food additives, pesticides, etc.).

Raghu Vamshi, Katherine Kapo, Chris Holmes (Waterborne), Paul DeLeo, Darci Ferrer (American Cleaning Institute). “Spatial Improvements Leading to Advances in Down-the-Drain Chemical Exposure Modeling with iSTREEM® 2.0“. Presentation. SETAC NA Orlando. 2016.

PresentationsHome and Personal Care Products2016

A Framework for Dynamic Estimation of Environmental Concentrations of Microplastics in WWTP Effluents and Receiving Waters at a National Scale

View MoreView Less

Down-the-drain exposure models provide a valuable screening-level tool for estimating environmental exposure to product ingredients which are treated and discharged at municipal wastewater treatment plants. Microplastics, plastic particles smaller than 5 mm diameter, enter wastewater treatment plants (WWTP) due to a variety of sources. Exposure modeling was performed using the iSTREEM® model, a publicly-available web-based model supported by the American Cleaning Institute (www.istreem.org) which estimates spatially-explicit concentrations of chemicals in effluent and receiving waters across the U.S. WWTP influent loadings of microbeads were estimated using per-capita usage derived from market manufacture survey (Gouin et al 2015) combined with individual facility population served and flow estimates within the iSTREEM® model. The analysis used multiple values for removal during treatment based on total suspended solid removal data and a wide range of in-stream decay rates, resulting in a variety of potential environmental exposure estimates. The removal and decay rates have a non-linear effect across the varying facilities & stream segments in the US landscape. Therefore, we developed an approach which leverages the advantages of the iSTREEM® model (national scope, individual facilities, and distributions of output) with the ability to screen for potential concern based on uncertain (and dynamic) removal and decay rates. This allows for flexibility in modeling the environmental concentration of microbeads regardless of size, weight, or physicochemical properties. We developed a 2-dimensional matrix with removal rate and decay rate as the primary axes. The individual cells within the array will then correspond to a reasonable worst-case Predicted Environmental Concentration (PEC) (e.g. 95th percentile) based on the national iSTREEM® results. These concentrations are based on a proxy quantity of microbeads which can be easily scaled. Therefore, with the matrix it is possible to supply an approximate removal and decay rate for the microplastic of interest and assess the estimated exposure by scaling the matrix value using the relationship between the substance quantity of interest and the proxy. This matrix framework can be used to help inform environmental exposure assessments by readily providing concentrations based on varying model inputs on WWTP removal and in-stream decay rates for microplastics, which continues to evolve as more research is conducted.

Nikki Maples-Reynolds, Chris M. Holmes, Raghu Vamshi (Waterborne), Iain A. Davies, Beth A. Lange (Personal Care Products Council), Scott Dyer (The Procter & Gamble Company). “A Framework for Dynamic Estimation of Environmental Concentrations of Microplastics in WWTP Effluents and Receiving Waters at a National Scale.” Presentation. SETAC NA. 2016.

PresentationsHome and Personal Care Products2016

Ecological Exposure Assessment Approaches for Indoor Use Pyrethroids in POTW Effluent

View MoreView Less
  • Session title: Environmental Risk Assessment of Down-the-Drain Chemicals
  • Presentation type: Presentation
  • Presentation room: Commonwealth Hall A1 at 2:35PM
  • Presentation date: Thursday, August 25, 2016
  • Presenting Author: Chris Holmes

Indoor use pesticides are regulated for potential environmental impacts after movement down the drain and eventual release from publicly owned treatment works (POTWs). Pyrethroids are commonly used within the home for applications such as general household insect control (including ants, cockroaches, fleas and bedbugs) by both professional and homeowner application, for houseplant protection, as an insect repellent on clothing, and for the maintenance of pet health. Depending on the application type, some portion of the pyrethroid may be disposed of down the drain via cleaning of hard surfaces after application, washing of clothing or bedding after treatment, and bathing pets indoors. As pyrethroids traverse the sewer system and eventually are released from wastewater treatment plants, a large fraction is removed from the effluent water due to the extremely high hydrophobicity of pyrethroids and the prevalence of organic material to which it can adsorb. However, some pyrethroid residues do pass through to the POTW effluent along with dissolved organic matter and these are mixed into river flow. It is at this point (as well as for downstream river reaches), that an assessment of the potential ecological effects of the bioavailable fraction of pyrethroids must be conducted. Using results for several pyrethroids, this presentation will discuss the relevant aspects that should be considered in an ecological risk assessment. In addition, a tiered approach for conducting an exposure assessment using models at various spatial scales will be presented along with an evaluation of the potential impact of various sources of uncertainty in these assessments. Comprehensive pyrethroid POTW monitoring data are available to help provide context for refined model output.

Chris Holmes* , Stephanie Herbstritt, Amy Ritter (Waterborne Environmental), Scott Jackson (BASF Corporation), Russell Jones (Bayer CropScience), Paul Hendley (Phasera Ltd.), Richard Allen (Valent USA Corportation), Gary Mitchell (FMC Corporation). “Ecological Exposure Assessment Approaches for Indoor Use Pyrethroids in POTW Effluent”. Presentation. ACS 2016.

PostersHome and Personal Care Products2016

iSTREEM 2.0: new enhancements for down-the-drain modeling to support environmental aquatic exposure assessments for cosmetics and personal care products

View MoreView Less Download Now>
  • Session title: Challenges in Environmental Assessment of Cosmetics and Personal Care Products
  • Presentation type: Poster
  • Presentation room: Exhibition Hall opens at 8:10AM
  • Presenting Author: Chris Holmes

The iSTREEM® model (“in-stream exposure model”), a free and publically-available web-based model supported by the American Cleaning Institute (istreem.org), provides a means to estimate chemical concentrations in effluent, receiving waters, and drinking water intakes (DWI) across the conterminous U.S. as well a number of watersheds in Canada under mean annual and low-flow (7Q10) conditions. This presentation will discuss recent upgrades made to enhance the model, underlying data, algorithms and presentation of results in the new version. iSTREEM® 2.0 incorporates geographic locations of over 12,000 wastewater treatment plant (WWTP) facilities along more than 300,000 segments of effluent-impacted river reaches, providing a framework to integrate geographic data to assess environmental risk for multiple scenarios of interest. WWTP facilities and associated facility level information were derived from the latest available USEPA Clean Watershed Needs Surveys. The river network used by iSTREEM® 2.0 was upgraded to a higher-resolution hydrologic dataset based on the USGS/USEPA NHDPlus version 2, which includes estimated mean annual and low flow (7Q10) data based on USGS stream gage measurements. Model results are presented in a standardized manner for consistent results communication across all users and are provided in a readily usable format (MS Excel) for easy interpretation and further customization of result presentation. Major assumptions used in constructing the model will be discussed. Recent developments are geared to expand adoption of the model by a wide variety of users as an environmental risk assessment tool across multiple commodity groups (cosmetics, personal care products, pharmaceuticals, food additives, pesticides, etc.) that require internal or regulatory environmental assessments. The discussion will also include a comparison of model results between the prior version of iSTREEM® and latest iSTREEM® 2.0 to examine the impact of recent upgrades on the national distribution of predicted environmental concentrations.

Raghu Vamshi, Katherine Kapo, Megan Sebasky, Chris Holmes (Waterborne Environmental); Paul DeLeo, Darci Ferrer (American Cleaning Institute). “2.0: new enhancements for down-the-drain modeling to support environmental aquatic exposure assessments for cosmetics and personal care products”. Poster. SETAC EU 2016.

PostersHome and Personal Care Products2015

Development of iSTREEM® 2.0, New Enhancements for Down-The-Drain Model to Support Environmental Exposure Assessments across Multiple Commodity Groups

View MoreView Less Download Now>

PRESENTATION ID: RP046

PRESENTATION DATE: Thursday, November 5, 2015

POSTER LOCATION: Exhibit Hall

ABSTRACT:

The iSTREEM® model (“in-stream exposure model”), a free and publically-available web-based model supported by the American Cleaning Institute (istreem.org), provides a means to estimate chemical concentrations in effluent, receiving waters, and drinking water intakes (DWI) across the conterminous U.S. as well a number of watersheds in Canada under mean annual and low-flow (7Q10) conditions. This presentation will discuss recent upgrades made to enhance the model, underlying data, algorithm and presentation of results leading to the release of iSTREEM® 2.0. iSTREEM® 2.0 incorporates geographic locations of over 12,000 wastewater treatment plant (WWTP) facilities along a U.S.-wide river network of effluent-impacted river reaches, providing a framework to integrate geographic data to assess environmental risk for multiple scenarios of interest. WWTP facilities and associated facility level information were derived from the latest available USEPA Clean Watershed Needs Surveys. The river network used by iSTREEM® 2.0 was upgraded from previous iSTREEM® versions to a higher-resolution hydrologic dataset based on the NHDPlus version 2, which includes estimated mean annual and low flow (7Q10) data based on USGS stream gage measurements. The relationship between WWTP facilities and DWI locations to the river network was established applying techniques developed by USEPA. Pre-calculation of certain data and efficiency improvements to model algorithm has enabled simulation runs to complete in significantly less time compared to prior versions of the model. Model results are presented in a standardized manner for consistent results communication across all users, and are provided in a readily usable format (MS Excel) for easy interpretation and further customization of result presentation. Major assumptions used in constructing the model will be discussed. Recent upgrades and developments are geared to expand adoption of the model by a wide variety of users as an environmental risk assessment tool across multiple commodity groups (personal care products, pharmaceuticals, food additives, pesticides, etc.) that require internal or regulatory environmental assessments. The discussion will also include a comparison of model results between the prior version of iSTREEM® and latest iSTREEM® 2.0 to examine the impact of recent upgrades on the national distribution of predicted environmental concentrations (PEC’s) across the U.S.

Raghu Vamshi, Katherine Kapo, Megan Sebasky, Christopher Holmes, Waterborne Environmental; Paul DeLeo, Darci Ferrer,American Cleaning Institute. “Development of iSTREEM® 2.0, New Enhancements for Down-The-Drain Model to Support Environmental Exposure Assessments across Multiple Commodity Groups”. SETAC Salt Lake City November 2015.

PostersAgriculture and Food, Home and Personal Care Products, Industrial and Specialty Chemicals2015

Green-washing: What Is a Meaningful Ecolabel

View MoreView Less Download Now>

POSTER ID: WP217

PRESENTATION DATE: Wednesday, November 4, 2015

LOCATION: Exhibit Hall

ABSTRACT:

Currently there are over 400 ecolabels for food and consumer products in the global marketplace. These labels are marketing efforts informing the purchaser of a variety of claims of sustainability measures enacted by companies. The marketplace is flooded with several similar claims on whether a product is less hazardous, sustainable, organic, non-GMO, fair-trade, recyclable, recycled, carbon neutral, or biodegradable. Generally there are four types of labels in order of volume, 1) voluntary environmental certification programs, 2) self- or 3) cause-related claims and 4) governmentally regulated. The federal, some state, and International governments have limited direct roles in ecolabeling beyond mandatory hazard warning (e.g., pesticide or Prop. 65) or informational disclosures (EPA fuel economy, certified organic, WaterSense, or Energy Star). There are several third-party certification and quasi-governmental programs that lend credibility to an ecolabel; however, standardization or centralization of these programs are lacking. Several seals of approval overlap in required data for certification; however, a comprehensive comparison of each standard has not been performed. The US EPA and GAO are reviewing the Environmentally Preferable Purchasing program currently by reviewing a subset of ecolabeling in regards to building paints/coatings/removers, building flooring, and furniture; however, implications towards the general public are unknown. Several questions arise when considering comparison of ecolabeling standards. What would be the best way to implement meaningful change to ecolabel marketing? Develop a list and score each label? Who will collect the information and develop trustworthy comprehensive scoring standards for each product sector? How to engage all stakeholders to agree on the standards? Finally how does all the data collection conform to expanding regulations such as Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Restriction of Hazardous Substances (RoHS) Directive, California’s Safer Consumer Products, and Washington’s Chemicals of High Concern to Children?

Nikki Maples-Reynolds, Duane Huggett, Waterborne Environmental.”Green-washing: What Is a Meaningful Ecolabel”. SETAC Salt Lake City November 2015.

PresentationsHome and Personal Care Products2015

A Global Exposure Model for Down the Drain Chemicals: A Case Study and Initial Evaluations

View MoreView Less Download Now>

The global use of a range of home and personal care products is increasing and this trend is likely to continue for the foreseeable future, as growth in emerging markets in South America, Africa and Asia continues. Industry has a responsibility to assess the environmental safety of chemicals used in consumer goods in all markets, not only in regions where regulations exist. Using spatially explicit data sets we present a global model, the Scenario Assembly Tool (ScenAT) to predict in-river concentrations of chemicals used in home and personal care (HPC) products. Here we present a case study and some initial evaluations looking at China and US using a selection of HPC ingredients. Key aims are to (a) present the ScenAT model and updates (b) present evaluation of model using monitoring data.

Chris Holmes, Raghu Vamshi, Vivienne Sclater, Katherine Kapo, Juliet Hodges, Oliver Price, John Kilgallon, Antonio Franco. “A Novel Exposure Model for Chemicals Used Globally in HPC Products: A Case Study and Evaluation”. SETAC EUROPE, May 2015.

PostersHome and Personal Care Products2015

Advancements in the Assessment of Micropollutants Through the Application of Broad-Scale “Down-The-Drain” Exposure Modelling

View MoreView Less Download Now>

Municipal wastewater effluent is a major exposure route for a wide range of “down-the-drain” chemicals that are treated and discharged to natural water bodies. Exposure models that focus on estimating concentrations of effluent-associated chemicals in receiving waters can serve as a valuable screening-level tool for risk assessment of micropollutants and other potential environmental stressors. iSTREEM®, a web-based model made freely available to the public by the American Cleaning Institute (www.istreem.org), provides a means to estimate concentrations of “down-the-drain” chemicals in effluent, receiving waters, and drinking water intakes across national and regional scales under mean annual and low (7Q10) flow conditions in the United States. The development and evolution of the iSTREEM® model reflects recent trends in technical, conceptual and practical aspects of “down-the-drain” exposure modelling to address current challenges and needs, such as assessment over broad geographies, incorporation of variablity, geo-referencing of modelling components, and accessibility and enhanced utility for end-users.

Katherine E. Kapo, Raghu Vamshi, Chris Holmes, Paul DeLeo, Darci Ferrer. “Advancements in the Assessment of Micropollutants Through the Application of Broad-Scale “Down-The-Drain” Exposure Modelling” May 2015 SETAC EU, Poster.

PostersHome and Personal Care Products2015

A Critical Review of the Biotransformation of Octamethylcyclotetrasiloxane(D4) and Decamethylcyclopentasiloxane(D5) in Fish

View MoreView Less Download Now>

Biotransformation is an important physiological process whereby a fish can convert a chemical to a more polar form so that it may be eliminated from the whole body. An understanding of the potential for a chemical to be biotransformedprovides important information for a bioaccumulation assessment. Octamethylcyclotetrasiloxane(D4) and decamethylcyclopentasiloxane(D5) are widely used in consumer products and industrial applications. These two siloxaneshave a high octanol-water partition coefficient (log Kow> 6), which is suggestive of a high aqueous bioconcentrationfactor (BCF). Several studies employing high performance liquid radiochromatographydemonstrate that D4 and D5 siloxaneare biotransformedinto more polar metabolites. A third in vivo study employed whole body autoradiography (WBA) and found that a bulk of the 14C-D4 and D5 radioactivity was associated with the liver, gall bladder and digestive tract during and after exposure. In vitro microsomal studies suggest that 14C-D5 was biotransformed by rainbow trout, while minimal biotransformation was observed with common carp and channel catfish. Using these data-sets, an estimated kmfor D4 and D5 siloxaneis > 0.01 day-1. Based on the available data, there is conclusive evidence that D5 siloxaneis biotransformedto more polar metabolites in fish. This biotransformation is important and provides rationale for D4 and D5 biodilutionbehavior generally observed in aquatic food webs (i.e. a TMF < 1).

Duane B. Huggett. “A Critical Review of the Biotransformation of Octamethylcyclotetrasiloxane(D4) and Decamethylcyclopentasiloxane(D5) in Fish”. May 2015 SETAC EU, Poster.

Papers & ReportsHome and Personal Care Products, Water/Wastewater Assessments2015

Mixing Zone and Drinking Water Intake Dilution Factor and Wastewater Generation Distributions to Enable Probabilistic Assessment of Down-The-Drain Consumer Product Chemicals in the U.S.

View MoreView Less Access Article>

Environmental exposure and associated ecological risk related to down-the-drain chemicals discharged by municipal wastewater treatment plants (WWTPs) are strongly influenced by in-stream dilution of receiving waters which varies by geography, flow conditions and upstream wastewater inputs. The iSTREEM® model (American Cleaning Institute, Washington D.C.) was utilized to determine probabilistic distributions for no decay and decay-based dilution factors in mean annual and low (7Q10) flow conditions. The dilution factors derived in this study are “combined” dilution factors which account for both hydrologic dilution and cumulative upstream effluent contributions that will differ depending on the rate of in-stream decay due to biodegradation, volatilization, sorption, etc. for the chemical being evaluated. The median dilution factors estimated in this study (based on various in-stream decay rates from zero decay to a 1 h half-life) for WWTP mixing zones dominated by domestic wastewater flow ranged from 132 to 609 at mean flow and 5 to 25 at low flow, while median dilution factors at drinking water intakes (mean flow) ranged from 146 to 2 × 107 depending on the in-stream decay rate. WWTPs within the iSTREEM® model were used to generate a distribution of per capita wastewater generated in the U.S. The dilution factor and per capita wastewater generation distributions developed by this work can be used to conduct probabilistic exposure assessments for down-the-drain chemicals in influent wastewater, wastewater treatment plant mixing zones and at drinking water intakes in the conterminous U.S. In addition, evaluation of types and abundance of U.S. wastewater treatment processes provided insight into treatment trends and the flow volume treated by each type of process. Moreover, removal efficiencies of chemicals can differ by treatment type. Hence, the availability of distributions for per capita wastewater production, treatment type, and dilution factors at a national level provides a series of practical and powerful tools for building probabilistic exposure models.

Katherine E. Kapo, Kathleen McDonough, Thomas Federle, Scott Dyer, Raghu Vamshi, 15 June 2015. “Mixing Zone and Drinking Water Intake Dilution Factor and Wastewater Generation Distributions to Enable Probabilistic Assessment of Down-The-Drain Consumer Product Chemicals in the U.S.”. Science of the Total Environment, Volumes 518–519, pp. 302-309. DOI: 10.1016/j.scitotenv.2015.02.105