Waterborne Search Waterborne Navigation

Publications: Home and Personal Care Products

PresentationsHome and Personal Care Products, Human Pharmaceuticals2014

Recent Developments in Exposure Modeling of “Down-the-Drain“ Chemicals Across Multiple Product Groups

View MoreView Less Download Now>

To promote product stewardship and regulatory compliance for chemical suppliers and manufacturers of formulated home and personal care products, an environmental fate model, iSTREEM®, was created. Although iSTREEM® is owned by the American Cleaning Institute, its capabilities expand beyond cleaning products. Any chemical that will be disposed of “down-the-drain” can be modelled with this application, including those in personal care products, pharmaceuticals and home use pesticides and disinfectants.

iSTREEM® is a web-based publicly available computer model (www.istreem.org) that calculates the concentration of chemicals from consumer products disposed of “down-the-drain” in the influent and effluent of more than 10,000 municipal wastewater treatment plants in the United States. In addition, the concentrations can be calculated in receiving streams at the point of effluent discharge (mixing zone), downstream of effluent discharge, and at the point of drinking water intake for more than 25,000 river reaches in the U.S.

Recently, iSTREEM® was expanded to include densely populated portions of Southern Ontario in Canada. By adding the Lower St. Lawrence watershed to the model, examination of the complete Great Lakes watershed is now possible.

A description of the process for acquisition and management of the Canadian datasets for flow of effluent-impacted streams in Southern Ontario and the relevant facilities (wastewater treatment plants and drinking water plants) will be provided. Particular emphasis will be given to the development of the flow data, and corroboration of the concentration data generated by simulation with local monitoring data for relevant chemicals.

Katherine E. Kapo, Chris Holmes, Raghu Vamshi, Paul DeLeo, Darci Ferrer. Recent Developments in Exposure Modeling of “Down-the-Drain“ Chemicals Across Multiple Product Groups. SETAC NA, 2014 platform.

Papers & ReportsHome and Personal Care Products2014

Combining High-Resolution Gross Domestic Product Data With Home and Personal Care Product Market Research Data to Generate a Subnational Emission Inventory for Asia

View MoreView Less Access Article>

Environmental risk assessment of chemicals is reliant on good estimates of product usage information and robust exposure models. Over the past 20 to 30 years, much progress has been made with the development of exposure models that simulate the transport and distribution of chemicals in the environment. However, little progress has been made in our ability to estimate chemical emissions of home and personal care (HPC) products. In this project, we have developed an approach to estimate subnational emission inventory of chemical ingredients used in HPC products for 12 Asian countries including Bangladesh, Cambodia, China, India, Indonesia, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Thailand, and Vietnam (Asia-12). To develop this inventory, we have coupled a 1 km grid of per capita gross domestic product (GDP) estimates with market research data of HPC product sales. We explore the necessity of accounting for a population’s ability to purchase HPC products in determining their subnational distribution in regions where wealth is not uniform. The implications of using high resolution data on inter- and intracountry subnational emission estimates for a range of hypothetical and actual HPC product types were explored. It was demonstrated that for low value products (<500 US$ per capita/annum required to purchase product) the maximum deviation from baseline (emission distributed via population) is less than a factor of 3 and it would not result in significant differences in chemical risk assessments. However, for other product types (>500 US$ per capita/annum required to purchase product) the implications on emissions being assigned to subnational regions can vary by several orders of magnitude. The implications of this on conducting national or regional level risk assessments may be significant. Further work is needed to explore the implications of this variability in HPC emissions to enable the HPC industry and/or governments to advance risk-based chemical management policies in emerging markets.

Hodges, J. E. N., Vamshi, R., Holmes, C., Rowson, M., Miah, T. and Price, O. R. 2014. “Combining High-Resolution Gross Domestic Product Data With Home and Personal Care Product Market Research Data to Generate a Subnational Emission Inventory for Asia”. Integr Environ Assess Manag, 10: 237–246. doi: 10.1002/ieam.1476.

PostersHome and Personal Care Products, Human Pharmaceuticals, Industrial and Specialty Chemicals2014

Tools for Probabilistic Environmental Exposure Assessment of “Down-The-Drain” Chemicals in The U.S.

View MoreView Less Download Now>

Environmental exposure assessment of down-the-drain chemicals (home and personal care products, pharmaceuticals, etc.) is strongly dependent upon the in-stream dilution of receiving waters, which varies by geography and flow conditions. In this study, the iSTREEM® model (www.istreem.org, American Cleaning Institute) was utilized to delineate probabilistic distributions of practical dilution factors (flow-based as well as incorporating varying chemical biodegradation rates) in mean and low flow conditions, as well as the national distribution of per capita domestic wastewater production. The distributions yielded by this work can serve as a reference for probabilistic exposure assessments for down-the-drain chemicals in wastewater treatment plant (WWTP) mixing zones and at drinking water intakes in the conterminous U.S. In addition, an assessment of treatment processes based on the WWTP facilities within the iSTREEM model provided an assessment of the proportion of wastewater flow volume treated by various processes (activated sludge, lagoon, etc.). The ability to quantitatively evaluate waste water production, treatment, and dilution in a spatial context provides a practical and powerful tool for assessing exposure and risk of down-the-drain chemicals of various types.

Katherine E. Kapo, Kathleen McDonough, Tom Federle, Scott D. Dyer, Raghu Vamshi, Chris M. Holmes. Tools for Probabilistic Environmental Exposure Assessment of “Down-The-Drain” Chemicals in The U.S. SETAC North America 35th Annual Meeting, Vancover, B.C. November 14, 2014.

PostersHome and Personal Care Products2014

Accounting for Regional Differences in Socioeconomic and Environmental Variables to Enable a Global Exposure Assessment for Chemicals Used in HPC Products

View MoreView Less Download Now>

The global use of a range of home and personal care (HPC) products increased between 232% and 750% from 1998 and 2013. This global trend is likely to continue for the foreseeable future, as growth in emerging markets in South America, Africa and Asia continues. Industry has a responsibility to assess the environmental safety of chemicals used in consumer goods in all markets, not only in regions where Regulations exist. We present an initiative to collect spatially explicit data sets in order to develop a global model to enable in-river concentrations of chemicals used in home and personal care products to be predicted. The model incorporates sub-national variability in HPC product use, geographically-linked socioeconomic data to account for a population’s ability to purchase certain products, water use and disposal data, information on sanitation practices and in river dilution factors from official census and other data sources. A novel exposure model, the Scenario Assembly Tool (ScenAT), was developed to predict environmental concentrations (PECs) of chemicals used in HPC products at multiple spatial scales across a country. In this study, we compare regional and country profiles of important variables that influence the exposure of home and personal care products (e.g. water use and sanitation practice, receiving water). We share socioeconomic and environmental databases that have been compiled to enable risk assessors to conduct robust assessment in developed and emerging markets. We explore the impact of these variables on emission estimates and PEC distributions in major regions across the globe and discuss regional differences. We use a case study to demonstrate how the model can be used to support screening level risk assessment decision-making.

Raghu Vamshi, Juliet Hodges, Christopher Holmes, Vivienne Sclater, Oliver Price, John Kilgallon, Todd Gouin. Accounting for Regional Differences in Socioeconomic and Environmental Variables to Enable a Global Exposure Assessment for Chemicals Used in HPC Products. SETAC North America 35th Annual Meeting, Vancover, B.C. November 14, 2014.

Papers & ReportsHome and Personal Care Products2012

Estimating Chemical Emissions From Home and Personal Care Products in China

View MoreView Less Access Article>

China’s economy has grown significantly and concomitantly so has the demand for home and personal care (HPC) products. The detection of chemicals used in HPC products is increasing in profile as China strives to improve its environmental management. China is developing robust exposure models for use in regulatory risk-based assessments of chemicals, including those chemicals used in HPC products. Accurate estimates of chemical emissions play an important role within this. A methodology is presented to derive spatially refined emissions from demographic and economic indicators with large variations in emissions calculated, showing product usage being higher in East and South China. The less affordable a product, the greater the influence per capita Gross Domestic Product has on the product distribution. Lastly, more spatially resolved input data highlights greater variation of product use. Linking product sales data with population density increased the observed variability in absolute usage distribution of HPC products at the county > province > regional > country scale.

“Estimating chemical emissions from Home and Personal Care products in China” Environmental Pollution 165: 199-207. 2012. (J. Hodges, C.M. Holmes, R. Vamshi, D. Mao and O. Price)